400-998-5282
專注多肽 服務(wù)科研
DBCO(二苯并環(huán)辛炔)試劑是用于應(yīng)變促進(jìn)的炔疊氮化物環(huán)加成(SPAAC)的最具反應(yīng)性的環(huán)炔之一,可實現(xiàn)無銅點擊化學(xué)。專肽生物優(yōu)勢供應(yīng)DBCO修飾的多肽。
通常利用多肽中的氨基,巰基或羧基,把DBCO連接到多肽上,
1、使用DBCO-NHS和多肽中的氨基反應(yīng)。
DBCO-NHS酯是一種與胺反應(yīng)的化合物,可用于修飾有機溶劑中的含胺分子(在水性介質(zhì)中的溶解度有限)。它與伯胺(例如賴氨酸殘基的側(cè)鏈或氨基硅烷涂層的表面)在中性或弱堿性pH下反應(yīng)形成共價鍵。低質(zhì)量重量將為修飾的分子添加最少的間隔基。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
DBCO-C6-NHS酯是一種胺反應(yīng)性化合物,可用于修飾有機介質(zhì)中的含胺分子。該試劑不溶于水介質(zhì)。擴展的6個碳原子間隔臂提高了在常用有機溶劑(包括二氯甲烷,氯仿,THF和乙酸乙酯)中的溶解度,并且還提高了衍生化效率和結(jié)合物的穩(wěn)定性。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
DBCO-PEG1-NHS酯是一種含有NHS酯部分的PEG衍生物,可以在中性或弱堿性條件下與伯胺(例如賴氨酸殘基的側(cè)鏈或氨基硅烷涂覆的表面)特異性且有效地反應(yīng)形成共價鍵。親水性PEG間隔臂提高了水溶性,并提供了長而靈活的連接,可最大程度減少與連接有關(guān)的位阻。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
2、使用DBCO-馬來酰亞胺和多肽中的巰基反應(yīng)。
DBCO-馬來酰亞胺是含有馬來酰亞胺基團(tuán)和DBCO部分的巰基反應(yīng)試劑。馬來酰亞胺基團(tuán)特異性且有效地與硫醇反應(yīng)形成硫醚鍵。低質(zhì)量的重量將為修飾的分子增加最少的間隔,并使DBCO部分簡單有效地?fù)饺牒腚装彼岬碾幕蚱渌瑤€基的生物分子中。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
DBCO-PEG4-馬來酰亞胺是含有馬來酰亞胺基團(tuán)和DBCO部分的PEG衍生物。親水性PEG間隔臂可改善在水性緩沖液中的溶解度。馬來酰亞胺基團(tuán)特異性且有效地與硫醇反應(yīng)形成穩(wěn)定的硫醚鍵。較低的質(zhì)量重量將為修飾的分子增加最少的間隔,并使DBCO部分簡單有效地結(jié)合到含半胱氨酸的肽或其他含巰基的生物分子上。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
3、使用DBCO-NH2和多肽中的巰基反應(yīng)。
DBCO-PEG1-胺是包含DBCO和胺部分的PEG衍生物。DBCO基團(tuán)通常用于無銅點擊化學(xué)反應(yīng)中。胺基可與羧酸,活化的NHS酯,羰基(酮,醛)等反應(yīng)。
DBCO-NHCO-PEG4-胺是具有延長的PEG間隔臂的羧基反應(yīng)性結(jié)構(gòu)單元。親水性PEG間隔臂可改善水溶性。在存在活化劑(例如EDC或DCC)的情況下,該試劑可用于通過穩(wěn)定的酰胺鍵衍生化羧基或活化的酯(例如NHS酯)。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
磺基DBCO-PEG4-胺是具有擴展的PEG間隔臂的水溶性羧基反應(yīng)性結(jié)構(gòu)單元。在存在活化劑(例如EDC或DCC)的情況下,該試劑可用于通過穩(wěn)定的酰胺鍵衍生化羧基或活化的酯(例如NHS酯)。親水的磺化間隔臂可大大改善DBCO衍生分子的水溶性,并提供長久且靈活的連接。DBCO通常用于無銅點擊化學(xué)反應(yīng)。
最后介紹一下DBCO和疊氮PEG的連接步驟。
To a solution of A (25 mg, 78.3 Gmol) in 0.1 mL of EtOH/H2O (3:2) was added a solution of B (20 mg, 78.3 Gmol) in 0.1 mL of EtOH/H2O (3:2). The reaction mixture was stirred for 60 min at room temperature. The aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were then dried over MgSO4 and concentrated under reduced pressure. The residue was then purified by flash column chromatography (CH2Cl2/methanol, 9:1) to obtain C, both isomers of the triazole were collected and treated as one compound. Yield (35 mg, 78%).
To a solution of A (0.32 mg, 1.0 Gmol) in 0.1 mL of EtOH/H2O (3:2) was added a solution of [18F]B (481 MBq) in 0.1 mL of EtOH/H2O (1:1). The reaction mixture was stirred for 15 min at room temperature. The reaction was monitored by radio-TLC. The crude compound was injected onto reverse-phase HPLC and purified. The desired compound [18F]C was collected from HPLC (tR = 12.9 min; C 18 silica gel, 10 Gm, 10 × 250 mm; 0.1% TFA in H2O/acetonitrile = 30:70 (v/v); 254 nm; 2 mL/min). The total synthesis time of [18F]3 was 35 min, and the decaycorrected radiochemical with > 98% radiochemical purity. Both isomers of the triazole were collected and treated as one compound. Specific activity was estimated by comparing UV peak intensity of the purified [18F]-labeled compound with reference non-radioactive compounds of known concentrations. The specific activity of [18F]3 (42 GBq/Gmol) was obtained after purification on the HPLC column. Yield 93%.