多肽的合成主要分為兩條途徑:化學(xué)合成多肽和生物合成多肽。
化學(xué)合成主要是以氨基酸與氨基酸之間縮合的形式來進行。在合成含有特定順序的多肽時,由于多肽合成原料中含有官能度大于2的氨基酸單體,多肽合成時應(yīng)將不需要反應(yīng)的基團暫時保護起來,方可進行成肽反應(yīng),這樣保證了多肽合成目標產(chǎn)物的定向性。多肽的化學(xué)合成又分為液相合成和固相合成。
多肽液相合成主要分為逐步合成和片段組合兩種策略。逐步合成簡潔迅速,可用于各種生物活性多肽片段的合成。片段組合法主要包括天然化學(xué)連接和施陶丁格連接。近年,多肽液相片段合成法發(fā)展迅速,在多肽和蛋白質(zhì)合成領(lǐng)域已取得了重大突破。在多肽片段合成法中,根據(jù)多肽片段的化學(xué)特定性或化學(xué)選擇性,多肽片段能夠自發(fā)進行連接,得到目標多肽。因為多肽片段含有的氨基酸殘基相對較少,所以純度較高,且易于純化。
多肽的生物合成方法主要包括發(fā)酵法、酶解法,隨著生物工程技術(shù)的發(fā)展,以DNA重組技術(shù)為主導(dǎo)的基因工程法也被應(yīng)用于多肽的合成。
多肽的固相合成
多肽的合成是氨基酸重復(fù)添加的過程,通常從C端向N端(氨基端)進行合成。多肽固相合成的原理是將目的肽的第一個氨基酸C端通過共價鍵與固相載體連接,再以該氨基酸N端為合成起點,經(jīng)過脫去氨基保護基和過量的已活化的第二個氨基酸進行反應(yīng),接長肽鏈,重復(fù)操作,達到理想的合成肽鏈長度,最后將肽鏈從樹脂上裂解下來,分離純化,獲得目標多肽。
1、Boc多肽合成法
Boc方法是經(jīng)典的多肽固相合成法,以Boc作為氨基酸α-氨基的保護基,芐醇類作為側(cè)鏈保護基,Boc的脫除通常采用三氟乙酸(TFA)進行。多肽合成時將已用Boc保護好的N-α-氨基酸共價交聯(lián)到樹脂上,TFA切除Boc保護基,N端用弱堿中和。
肽鏈的延長通過二環(huán)己基碳二亞胺(DCC)活化、偶聯(lián)進行,最終采用強酸氫氟酸(HF)法或三氟甲磺酸(TFMSA)將合成的目標多肽從樹脂上解離。在Boc多肽合成法中,為了便于下一步的多肽合成,反復(fù)用酸進行脫保護,一些副反應(yīng)被帶入實驗中,例如多肽容易從樹脂上切除下來,氨基酸側(cè)鏈在酸性條件不穩(wěn)定等。
2、Fmoc多肽合成法
Carpino和Han以Boc多肽合成法為基礎(chǔ)發(fā)展起來一種多肽固相合成的新方法——Fmoc多肽合成法。
Fmoc多肽合成法以Fmoc作為氨基酸α-氨基的保護基。其優(yōu)勢為在酸性條件下是穩(wěn)定的,不受TFA等試劑的影響,應(yīng)用溫和的堿處理可脫保護,所以側(cè)鏈可用易于酸脫除的Boc保護基進行保護。
肽段的最后切除可采用TFA/二氯甲烷(DCM)從樹脂上定量完成,避免了采用強酸。同時,與Boc法相比,F(xiàn)moc法反應(yīng)條件溫和,副反應(yīng)少,產(chǎn)率高,并且Fmoc基團本身具有特征性紫外吸收,易于監(jiān)測控制反應(yīng)的進行。Fmoc法在多肽固相合成領(lǐng)域應(yīng)用越來越廣泛。
多肽液相分段合成
隨著多肽合成的發(fā)展,多肽液相分段合成(即多肽片段在溶液中依據(jù)其化學(xué)專一性或化學(xué)選擇性,自發(fā)連接成長肽的合成方法)在多肽合成領(lǐng)域中的作用越來越突出。其特點在于可以用于長肽的合成,并且純度高,易于純化。
多肽液相分段合成主要分為天然化學(xué)連接和施陶丁格連接。天然化學(xué)連接是多肽分段合成的基礎(chǔ)方法,局限在于所合成的多肽必須含半光氨酸(Cys)殘基,因而限定了天然化學(xué)連接方法的應(yīng)用范圍。天然化學(xué)連接方法的延伸包括化學(xué)區(qū)域選擇連接、可除去輔助基連接、光敏感輔助基連接。
施陶丁格連接方法是另一種基礎(chǔ)的片段連接方法,其為多肽片段連接途徑開拓了更廣闊的思路。正交化學(xué)連接方法是施陶丁格連接方法的延伸,通過簡化膦硫酯輔助基來提高片段間的縮合率。
其他多肽合成方法
1、氨基酸的羧內(nèi)酸酐法(NCA)
氨基酸的羧內(nèi)酸酐的氨基保護基也可活化羧基。
NCA的原理:在堿性條件下,氨基酸陰離子與NCA形成一個更穩(wěn)定的氨基甲酸酯類離子,在酸化時該離子失去二氧化碳,生成二肽。生成的二肽又與其他的NCA結(jié)合,反復(fù)進行。
NCA適用于短鏈肽片段的多肽合成,其周期短、操作簡單、成本低、得到產(chǎn)物分子量高,在目前多肽合成中所占比例較大,技術(shù)也較為通用。
2、組合化學(xué)法
20世紀80年代,以固相多肽合成為基礎(chǔ)提出了組合化學(xué)法,即氨基酸的構(gòu)建單元通過組合的方式進行連接,合成出含有大量化合物的化學(xué)庫,并從中篩選出具有某種理化性質(zhì)或藥理活性化合物的一套多肽合成策略和篩選方案。
組合化學(xué)法的多肽合成策略主要包括:混合-均分法、迭代法、光控定位組合庫法、茶葉袋法等。組合化學(xué)法的最大優(yōu)點在于可同時合成多種化合物,并且能最大限度地篩選各種新化合物及其異構(gòu)體。
3、酶解法
酶解法是用生物酶降解植物蛋白質(zhì)和動物蛋白質(zhì),獲得小分子多肽。酶解法因其多肽產(chǎn)量低、投資大、周期長、污染嚴重,未能實現(xiàn)工業(yè)化生產(chǎn)。酶解法獲得的多肽能夠保留蛋白質(zhì)原有的營養(yǎng)價值,并且可以獲得比原蛋白質(zhì)更多的功能,更加綠色,更加健康。
4、基因工程法
基因工程法主要以DNA重組技術(shù)為基礎(chǔ),通過合適的DNA模板來控制多肽的序列合成。有研究者通過基因工程法獲得了準彈性蛋白-聚纈氨酸-脯氨酸-甘氨酸-纈氨酸-甘氨酸肽(VPGVG)。
利用基因工程技術(shù)生產(chǎn)的活性多肽還有肽類抗生素、干擾素類、白介素類、生長因子類、腫瘤壞死因子、人生長激素,血液中凝血因子、促紅細胞生成素,組織非蛋白纖溶酶原等。
基因工程法合成多肽具有表達定向性強,安全衛(wèi)生,原料來源廣泛和成本低等優(yōu)點,但因存在高效表達,不易分離,產(chǎn)率低的問題,難以實現(xiàn)規(guī)?;a(chǎn)。
5、發(fā)酵法
發(fā)酵法是從微生物代謝產(chǎn)物中獲得多肽的方法。雖然發(fā)酵法的成本低,但其應(yīng)用范圍較窄,因為現(xiàn)在微生物能夠獨立合成的聚氨基酸只有ε-聚賴氨酸(ε-PL)、γ-聚谷氨酸(γ-PGA)和藍細菌肽。
多肽產(chǎn)物純度選擇
常見的質(zhì)譜級多肽純度,一般要求>95%
用于抗體篩選純度,一般>85%即可
NMR和結(jié)晶試驗中,純度一般>98%
粗品肽,一般>50%即可用于多肽篩選
參與文獻