作 者:陰棉棉, 呂明榮,姚桂東,田卉,連杰,劉琳, 梁猛,王勇,孫斐
Abstract:
Our previous studies have shown that microRNA-383 (miR-383) is one of the most down-regulated miRNA in TGF-β1-treated mouse ovarian granulosa cells (GC). However, the roles and mechanisms of miR-383 in GC function during follicular development remain unknown. In this study, we found that miR-383 was mainly expressed in GC and oocytes of mouse ovarian follicles. Overexpression of miR-383 enhanced estradiol release from GC through targeting RNA binding motif, single stranded interacting protein 1 (RBMS1). miR-383 inhibited RBMS1 by affecting its mRNA stability, which subsequently suppressed the level of c-Myc (a downstream target of RBMS1). Forced expression of RBMS1 or c-Myc attenuated miR-383-mediated steroidogenesis-promoting effects. Knockdown of the transcription factor steroidogenic factor-1 (SF-1) significantly suppressed the expression of Sarcoglycan zeta (SGCZ) (miR-383 host gene), primary and mature miR-383 in GC, indicating that miR-383 was transcriptionally regulated by SF-1. Luciferase and chromatin immunoprecipitation assays revealed that SF-1 specifically bound to the promoter region of SGCZ and directly transactivated miR-383 in parallel with SGCZ. In addition, SF-1 was involved in regulation of miR-383- and RBMS1/c-Myc-mediated estradiol release from GC. These results suggest that miR-383 functions to promote steroidogenesis by targeting RBMS1, at least in part, through inactivation of c-Myc. SF-1 acts as a positive regulator of miR-383 processing and function in GC. Understanding of regulation of miRNA biogenesis and function in estrogen production will potentiate the usefulness of miRNA in the control of reproduction and treatment of some steroid-related disorders.
?
?
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com