2014.12.12,我院吳清發(fā)教授研究組在PLoS Pathogens上在線發(fā)表題為:“Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms”的論文,PLoS Pathog 10(12): e1004553.
作者: Zhixiang Zhang, Shuishui Qi, Nan Tang, Xinxin Zhang, Shanshan Chen, Pengfei Zhu, Lin Ma,Jinping Cheng, Yun Xu, Meiguang Lu, Hongqing Wang, Shou-Wei Ding, Shifang Li, Qingfa Wu
Abstract:
Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.
http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004553
版權與免責聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構成其他建議。僅提供交流平臺,不為其版權負責。如涉及侵權,請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com