《國家自然科學基金十三五發(fā)展規(guī)劃》
118個學科優(yōu)先發(fā)展領域
?
(一)各科學部優(yōu)先發(fā)展領域
“十三五”期間,通過支持我國優(yōu)勢學科和交叉學科的重要前沿方向,以及從國家重大需求中凝練可望取得重大原始創(chuàng)新的研究方向,進一步提升我國主要學科的國際地位,提高科學技術滿足國家重大需求的能力。各科學部遴選優(yōu)先發(fā)展領域及其主要研究方向的原則是:(1)在重大前沿領域突出學科交叉,注重多學科協(xié)同攻關,促進主要學科在重要方向取得突破性成果,帶動整個學科或多個分支學科迅速發(fā)展;(2)鼓勵探索和綜合運用新概念、新理論、新技術、新方法,為解決制約我國經濟社會發(fā)展的關鍵科學問題做貢獻;(3)充分利用我國科研優(yōu)勢與資源特色,進一步提升學科的國際影響力。各科學部優(yōu)先發(fā)展領域將成為未來五年重點項目和重點項目群立項的主要來源。
1.數(shù)理科學部優(yōu)先發(fā)展領域
?。?/strong>1)數(shù)論與代數(shù)幾何中的朗蘭茲(Langlands)綱領
主要研究方向:幾何p-adic?Galois表示的Fontaine-Mazur猜想;亞辛群的穩(wěn)定跡公式;Shimura簇的上同調;特征p上的代數(shù)群的不可約特征標問題;簡約群的表示和它們的扭結Jacquet模的關系;BSD猜想及相關問題。
?。?/strong>2)微分方程中的分析、幾何與代數(shù)方法
主要研究方向:幾何方程奇點問題與流形分類;Morse理論和指標理論及應用;高虧格的Lagrangian?Floer同調理論;Hamilton系統(tǒng)的動力學不穩(wěn)定性;動力系統(tǒng)的遍歷論;Navier-Stokes方程的整體適定性;廣義相對論中Einstein方程的宇宙監(jiān)督猜想,以及相關的反問題數(shù)學理論與方法。
(3)隨機分析方法及其應用
主要研究方向:非線性期望下的隨機微分方程;隨機偏微分方程與正則結構;隨機微分幾何、狄氏型及應用;馬氏過程遍歷論;離散馬氏過程的精細刻畫;隨機矩陣、極限理論與大偏差,以及在金融、網絡、監(jiān)測、生物、醫(yī)學和圖像處理等方面的應用。
?。?/strong>4)高維/非光滑系統(tǒng)的非線性動力學理論、方法和實驗技術
主要研究方向:含非線性、非光滑性、時滯和不確定性等因素的高維約束系統(tǒng)的動力學建模、分析與控制,及學科交叉中的新概念和新理論;相關的大規(guī)模計算和實驗方法和技術研究。
?。?/strong>5)超常條件下固體的變形與強度理論
主要研究方向:超常條件下固體的變形與強度理論、柔性結構多場大變形本構關系與功能-材料-結構一體化設計原理、新型復雜結構的不確定性動態(tài)響應規(guī)律及固體中彈性波傳播機理;相關的新實驗方法與儀器、多尺度算法與軟件。
?。?/strong>6)高速流動及控制的機理和方法
主要研究方向:與高速空天飛行器和海洋航行器流動以及多相復雜流動相關的湍流機理及其控制手段;稀薄氣體流動和高速流動的理論、模擬方法及實驗技術。
?。?/strong>7)銀河系的集成歷史及其與宇宙大尺度結構的演化聯(lián)系
主要研究方向:銀河系的集成歷史;銀河系的物質分布;暗物質粒子性質探測;宇宙大尺度結構的形成;宇宙加速膨脹的觀測;暗能量本質和宇宙尺度引力理論;星系形成的物理過程;星系性質與大尺度結構的關系;大質量黑洞的形成及對星系形成的影響。
(8)恒星的形成與演化以及太陽活動的來源
主要研究方向:星際物質循環(huán)、分子云的形成、性質及其演化;恒星的形成、內部結構與演化;致密天體及其高能過程;太陽大氣的磁場結構;太陽發(fā)電機理論與太陽活動周演化規(guī)律。
?。?/strong>9)自旋、軌道、電荷、聲子多體相互作用及其宏觀量子特性
主要研究方向:新的量子多體理論與計算方法;新的高溫超導以及拓撲超導體系,銅基、鐵基和重費米子超導的物理機理問題,界面超導體系的制備與機理;拓撲絕緣體等拓撲量子態(tài)的調控機制,不同材料體系中拓撲磁結構;高密度、低能耗信息拓撲磁存儲的原理性器件;新型低維半導體材料中能谷與自旋態(tài)的控制,高遷移率的雜質能帶和多能帶效應。
?。?/strong>10)光場調控及其與物質的相互作用
主要研究方向:光場的時域、頻域、空間調控,超快、強場和熱稠密環(huán)境中原子分子動力學行為;強激光驅動粒子加速、輻射源產生及激光聚變物理;納米尺度的極端光聚焦、表征與操控;介觀光學結構光過程精確描述以及微納結構中光子與電子、聲子等相互作用新機制,光子-光電器件耦合與操控和等離激元的產生及傳輸。
(11)冷原子新物態(tài)及其量子光學
主要研究方向:光子-物質相互作用及其量子操控的先進技術,新奇光量子態(tài)的構造、控制和測量,固態(tài)系統(tǒng)相互作用的光力學;基于量子光學的精密測量的新原理和新方法;冷原子分子氣體的高精度成像技術與量子模擬,分子氣體冷卻的新原理和新方法;原子分子內態(tài)、外部環(huán)境及相互作用精確操控的新機制。
?。?/strong>12)量子信息技術的物理基礎與新型量子器件
主要研究方向:可擴展性的固態(tài)物理體系量子計算與模擬;面向實際應用的量子通訊、量子網絡和量子計量學等量子技術前沿的變革性新技術;用邏輯嚴謹?shù)牧孔游锢砝碚撛忈尅б孔有畔⒌难芯糠较颉?/p>
?。?/strong>13)后Higgs時代的亞原子物理與探測
主要研究方向:超弦/M-理論、極早期宇宙研究探討相互作用的統(tǒng)一;TeV物理、Higgs特性、超對稱粒子和其他新粒子、強子物理與味物理、對稱性研究和格點QCD計算;量子色動力學的相結構與夸克膠子等離子體新物質特性;不穩(wěn)定核和關鍵天體核反應的精確測量,滴線區(qū)原子核的奇異結構和同位旋相關衰變譜學,合成超重核的新機制和新技術。
?。?/strong>14)中微子特性、暗物質尋找和宇宙線探測
主要研究方向:中微子振蕩、中微子質量、無中微子雙β衰變、直接和間接尋找暗物質、宇宙線源的成分和加速機制;抗輻照,大面積、空間、時間和能量高靈敏、高分辨的核與粒子探測原理、方法和技術;超弱信號,超低本底的探測機制和技術。
(15)等離子體多尺度效應與高穩(wěn)運行動力學控制
主要研究方向:等離子體中多尺度模式(包含波與不穩(wěn)定性和邊界層物理)之間的非線性相互作用和磁重聯(lián)過程;穩(wěn)態(tài)高性能等離子體的宏觀穩(wěn)定性和動力學和微觀不穩(wěn)定性、湍流和輸運;電子動力學和在相空間所有維數(shù)上的多尺度湍流/輸運的機理和模型;尋找降低熱和粒子流對材料表面損傷的方法;波與粒子相互作用及其與其他物理過程的耦合。
2.化學科學部優(yōu)先發(fā)展領域
(1)化學精準合成
主要研究方向:新試劑、新反應、新概念、新策略和新理論驅動的合成化學;非常規(guī)和極端條件下的合成化學;原子經濟、綠色可持續(xù)和精準可控的合成方法與技術;化學原理驅動的合成生物學;特定功能導向的新分子、新物質和新材料的創(chuàng)造。
?。?/strong>2)高效催化過程及其動態(tài)表征
主要研究方向:構筑特定結構和功能催化材料的新方法與新概念;催化活性位點的調控;原位、動態(tài)、高時空分辨的催化表征新方法與新技術;催化反應機理和過程的新理論方法。
(3)化學反應與功能的表界面基礎研究
主要研究方向:表界面結構與電子態(tài)的新穎特性;表界面修飾和反應性的調控;分子吸附、組裝、活化與反應;外場調控與表界面反應性能增強;多尺度、多組分復雜界面電化學體系;新介質體系中的膠體以及界面現(xiàn)象;表界面過程研究的新理論和新方法。
?。?/strong>4)復雜體系的理論與計算化學
主要研究方向:強關聯(lián)及激發(fā)態(tài)的電子結構理論新方法;針對大分子和凝聚相體系的低標度有效算法;針對復雜體系,發(fā)展多尺度的動力學理論,包括量子動力學、量子-經典混合以及經典動力學。
?。?/strong>5)化學精準測量與分子成像
主要研究方向:新的分析策略、原理與方法;超高時空分辨光譜技術與成像分析;多維譜學原理與技術;單分子、生物大分子和單細胞的精準測量、表征及操控;活體的原位和實時分析;生物傳感與重大疾病診斷;公共安全預警、甄別與溯源;大科學裝置的應用;極端條件下的化學測量與分析。
?。?/strong>6)分子選態(tài)與動力學控制
主要研究方向:高效分子振動態(tài)制備技術和基于相干光源的探測技術;多原子反應動態(tài)學;表界面化學反應動力學;分子振動激發(fā)態(tài)、電子激發(fā)態(tài)及非絕熱動力學;多元復雜體系的動力學測量及模擬。
?。?/strong>7)先進功能材料的分子基礎
主要研究方向:新型功能材料體系的分子基礎與原理,以及多尺度結構及宏觀性能控制;高性能和多功能新材料的創(chuàng)制,這些性能與功能包括面向能源、健康、環(huán)境和信息等領域的光、電、磁、分離、吸附、仿生、能量儲存與轉換、藥物輸運、自修復、極端條件應用等。特別注重我國特色資源的研究和深度利用。
?。?/strong>8)可持續(xù)的綠色化工過程
主要研究方向:復雜體系化工基礎數(shù)據(jù)的精準測量與建模;限域空間或極端條件下的質荷與能量傳遞和反應;復雜化工體系介尺度理論與方法;基于原子經濟性和宏量制備的化工過程及過程強化技術。
?。?/strong>9)環(huán)境污染與健康危害中的化學追蹤與控制
主要研究方向:復雜環(huán)境介質中污染物的表征與分析,多介質界面行為與調控;大氣復合污染控制;灰霾形成機制與健康風險;水和土壤污染過程控制與修復;持久性有毒污染物環(huán)境暴露與健康效應;環(huán)境中抗生素及抗性基因的傳播與控制;放射性物質的環(huán)境行為與防控。
?。?/strong>10)生命體系功能的分子調控
主要研究方向:以細胞命運調控為主線的分子探針設計、合成及應用;生物大分子的合成、標記、操縱、動態(tài)修飾、化學干預及其相互作用網絡定量化;小分子對生物大分子的系統(tǒng)調控;重要生物活性分子的發(fā)現(xiàn)與修飾;重大疾病治療的先導藥物發(fā)現(xiàn)和靶點識別。
?。?/strong>11)新能源化學體系的構建
主要研究方向:碳基能源的高效催化轉化;燃料電池、二次電池和超級電容器等電化學能量儲存與轉化系統(tǒng)集成;高效太陽能電池材料設計與制備、器件組裝與集成的光電轉換過程化學;纖維素類生物質選擇轉化和生物燃料電池。
?。?/strong>12)聚集體與納米化學
主要研究方向:分子聚集體中的基元協(xié)同作用;大分子、超分子和納米結構的精確構筑和調控;大分子凝聚態(tài)結構、動態(tài)演變及其理論與計算方法。
(13)多級團簇結構與仿生
主要研究方向:團簇的精準制備、本征性質表征和理論;團簇的動態(tài)生長、機理、結構和性能;團簇多級結構的構筑與協(xié)同效應;仿生團簇的生物功能和高效化學活性。
3.生命科學部優(yōu)先發(fā)展領域
?。?/strong>1)生物大分子的修飾、相互作用與活性調控
主要研究方向:生物大分子修飾、動態(tài)變化及其功能;生物大分子相互作用的動態(tài)性和網絡特征;生物大分子特異相互作用的結構基礎和預測;生物大分子復合體的自組裝;糖、脂化學與酶促合成、結構與功能;高分辨等技術方法研究細胞內大分子行為。
?。?/strong>2)細胞命運決定的分子機制
主要研究方向:細胞可塑性調控機制;細胞器和亞細胞結構的動態(tài)變化及其功能;細胞跨膜信號轉導與命運決定;干細胞多能性維持與定向分化的機制;胚胎干細胞分化的轉錄和表觀遺傳調控網絡。
?。?/strong>3)配子發(fā)生與胚胎發(fā)育的調控機理
主要研究方向:配子發(fā)生和成熟的分子機制;胚胎發(fā)育圖式的動態(tài)變化及其分子調控網絡;細胞譜系發(fā)育的分子機制;配子發(fā)生和胚胎發(fā)育的表觀遺傳調控。
(4)免疫應答與效應的細胞分子機制
主要研究方向:免疫細胞新亞群、新分子及其功能;免疫細胞識別和活化的信號轉導;不同類型免疫細胞相互作用及其功能;微生態(tài)黏膜免疫機制;免疫耐受和免疫逃逸機制。
?。?/strong>5)糖/脂代謝的穩(wěn)態(tài)調控與功能機制
主要研究方向:糖/脂代謝與能量代謝的網絡調控;膜糖/脂代謝的動態(tài)調控與功能;糖/脂特異代謝物的轉運機制與功能;細胞或組織器官特異的糖/脂代謝與功能;糖/脂代謝調控與內分泌系統(tǒng)的相互關系;糖/脂代謝的穩(wěn)態(tài)維持與異常發(fā)生機制。
?。?/strong>6)重要性狀的遺傳規(guī)律解析
主要研究方向:復雜性狀的遺傳結構和調控機制;復雜疾病的遺傳和生理機制;生物性狀演化的遺傳基礎;人類及重要生物表型的特征及遺傳基礎;次級代謝調控的遺傳基礎。
?。?/strong>7)神經環(huán)路的形成及功能調控
主要研究方向:神經元的發(fā)育、形態(tài)與功能;神經元之間選擇性聯(lián)系機制;神經環(huán)路信息的處理和整合;神經環(huán)路異常與疾病發(fā)生機理。
?。?/strong>8)認知的心理過程和神經機制
主要研究方向:感知覺信息處理與整合;注意和意識的心理過程和神經機制;高級認知過程(學習、記憶、決策、語言等)的心理和神經機制;認知異常的發(fā)生機理、早期識別與干預;人類個體認知與社會行為的發(fā)生發(fā)展過程。
?。?/strong>9)物種演化的分子機制
主要研究方向:特殊環(huán)境下物種的適應性演化機制;物種相互作用的協(xié)同演化機制;物種相似性狀的趨同演化機制。
?。?/strong>10)生物多樣性及其功能
主要研究方向:生物多樣性的形成機制;生物多樣性的維持機制;生物多樣性喪失機制;生物多樣性與生態(tài)系統(tǒng)功能的關系。
(11)農業(yè)生物遺傳改良的分子基礎
主要研究方向:農業(yè)生物重要性狀形成的遺傳基礎;農業(yè)生物基因與環(huán)境互作機制;農業(yè)生物表型和基因型的關系;農業(yè)生物育種的新理念和新模型。
?。?/strong>12)農業(yè)生物抗病蟲機制
主要研究方向:農業(yè)生物抗病蟲的分子和生理機制;農業(yè)生物免疫應答的分子基礎;農業(yè)生物病蟲害發(fā)生的規(guī)律與防治基礎。
(13)農林植物對非生物逆境的適應機制
主要研究方向:農林植物適應非生物逆境的分子生理基礎;農林植物對多種非生物逆境的交叉響應機理;農林植物適應非生物逆境的栽培調控機制。
?。?/strong>14)農業(yè)動物健康養(yǎng)殖的基礎
主要研究方向:農業(yè)動物重要性狀形成的生物學規(guī)律和生理基礎;農業(yè)動物及養(yǎng)殖環(huán)境中病原的適應性與傳播規(guī)律;重要人獸共患病的發(fā)生規(guī)律及防控;養(yǎng)殖過程中環(huán)境因子變化和污染物遷移規(guī)律;飼料營養(yǎng)及代謝產物對動物免疫的影響機制;牧草品種選育及草地生產力維持機制。
?。?/strong>15)食品加工、保藏過程營養(yǎng)成分的變化和有害物質的產生及其機制
主要研究方向:食品加工方式、加工過程營養(yǎng)成分的變化及其機制;食品貯藏保鮮和營養(yǎng)成分維持的生物學基礎;食品中有害物質的產生及其消除的機制;食品有害物質痕量、快速檢測的理論與新技術、新方法。
4.地球科學部優(yōu)先發(fā)展領域
?。?/strong>1)地球觀測與信息提取的新理論、技術和方法
主要研究方向:地球物質物理化學性質和過程的實驗技術;地球深部探測和地表觀測的理論和技術;微量、微區(qū)與高精度和高靈敏度實驗分析技術;地球系統(tǒng)基礎信息采集和應用的理論與技術;深空、深地、深時、深海的探測理論與方法;地學大數(shù)據(jù)的同化、融合、共享和分析技術;地球系統(tǒng)科學體系下的遙感定量化研究;觀測系統(tǒng)和多源數(shù)據(jù)融合;地球系統(tǒng)科學數(shù)值計算與模擬技術。
?。?/strong>2)地球深部過程與動力學
主要研究方向:地殼和地幔的結構、組成和狀態(tài);大陸巖石圈的形成、改造與演化;板塊匯聚過程與造山帶動力學;地球深部流體和揮發(fā)份;板塊界面相互作用與俯沖帶過程;地球深部過程與表層過程的耦合關系;早期地球的構造體制和組成;地震災害孕育發(fā)生和成災機理;大陸活動火山成因機理與災害和環(huán)境效應。
?。?/strong>3)地球環(huán)境演化與生命過程
主要研究方向:重要化石門類系統(tǒng)古生物學與生命之樹;深時生物多樣性演變與規(guī)律;生命起源與地球物質演化;高分辨率綜合地層學與地時研究;地球微生物學及化學過程與環(huán)境演化;極端條件下的生命過程與地質環(huán)境;地質歷史時期的重大環(huán)境事件與成因;人類起源與環(huán)境背景之間的共同演化;類地行星起源與演化。
?。?/strong>4)礦產資源和化石能源形成機理
主要研究方向:地球深部資源和能源的賦存狀態(tài)與勘察;板塊匯聚、巖石圈再造與成礦作用;特殊元素分散富集與成礦作用;盆地動力學與成礦成藏作用;致密油氣形成條件、富集區(qū)分布與勘探;地下水循環(huán)與可持續(xù)利用;成礦模型、成礦系統(tǒng)與成礦機理。
?。?/strong>5)海洋過程及其資源、環(huán)境和氣候效應
主要研究方向:多尺度海洋過程及其在氣候系統(tǒng)中的作用;海洋生態(tài)系統(tǒng)與生物多樣性;海洋生物地球化學過程與生態(tài)環(huán)境;東亞大陸邊緣海形成演化與島?。笾屑瓜到y(tǒng);洋陸過渡帶結構、構造與相互作用;南、北極環(huán)境變化與海洋過程,海洋多圈層相互作用過程和機理。
?。?/strong>6)地表環(huán)境變化過程及其效應
主要研究方向:陸地表層系統(tǒng)的過程與機制;地表過程對環(huán)境變化的響應機制及其反饋;土壤過程及其生物地球化學循環(huán);典型區(qū)域地表過程綜合研究。
?。?/strong>7)土、水資源演變與可持續(xù)利用
主要研究方向:土壤過程與演變;土壤質量與資源效應;流域水文過程及其生態(tài)效應;區(qū)域水循環(huán)與水資源的形成機制;區(qū)域水、土資源耦合與可持續(xù)利用;土壤生物的生態(tài)功能與環(huán)境效應;生態(tài)水文過程與生態(tài)服務。
(8)地球關鍵帶過程與功能
主要研究方向:關鍵帶結構、形成與演化機制;關鍵帶物質轉化過程與相互作用;關鍵帶的服務功能與可持續(xù)發(fā)展;關鍵帶過程建模及系統(tǒng)模擬研究。
?。?/strong>9)天氣、氣候與大氣環(huán)境過程、變化及其機制
主要研究方向:天氣與氣候變化的動力機制及其可預報性;氣候年代際變異預測;大氣物理、大氣化學過程及相互影響機制;亞洲區(qū)域天氣變化、氣候變異和大氣環(huán)境的相互影響;氣候系統(tǒng)中能量和物質的交換和循環(huán);極端氣候事件的頻率和幅度。
?。?/strong>10)日地空間環(huán)境和空間天氣
主要研究方向:空間天氣科學前沿基本物理過程;日地系統(tǒng)空間天氣耦合過程;空間天氣區(qū)域建模和集成建模方法;空間天氣對人類活動的影響的機理和對策研究;太陽活動及其對空間天氣的影響;空間與海洋大地測量理論、方法與技術及其地學應用。
(11)全球環(huán)境變化與地球圈層相互作用
主要研究方向:全球變暖停滯(Hiatus)的過程與機制;海氣相互作用與亞洲氣候環(huán)境變化;全球氣候變化與水循環(huán);生物地球化學循環(huán)與氣候環(huán)境變化;新生代氣候系統(tǒng)古增溫及其影響;圈層相互作用和地球系統(tǒng)模擬。
(12)人類活動對環(huán)境和災害的影響
主要研究方向:工業(yè)、城鎮(zhèn)固廢棄物污染特征、交互作用規(guī)律與安全處置;大規(guī)模人類工程活動對環(huán)境影響和致災機理;礦產資源利用的生態(tài)環(huán)境效應;滑坡、泥石流等地質災害的演化機制、誘發(fā)因素與成災機理;大氣復合污染物形成過程中的人類影響;人類活動對區(qū)域和全球環(huán)境的影響;區(qū)域環(huán)境過程與調控;區(qū)域可持續(xù)發(fā)展;環(huán)境污染物的多介質界面過程、效應與調控;區(qū)域人類活動與資源環(huán)境耦合;城鎮(zhèn)化與資源環(huán)境效應。
5.工程與材料科學部優(yōu)先發(fā)展領域
?。?/strong>1)亞穩(wěn)金屬材料的微結構和變形機理
主要研究方向:發(fā)展新型具有特殊性能的非晶態(tài)合金體系;復雜合金相的結構和性能研究;結構特征與表征方法;結構與熱穩(wěn)定性;變形機理及強化機制;脆性斷裂機理及韌化;深過冷條件下的凝固行為及晶體形核和生長過程研究。
?。?/strong>2)高性能輕質金屬材料的制備加工和性能調控
主要研究方向:輕質金屬材料(鋁、鎂、鈦合金和泡沫金屬等)合金設計、強韌化機理及組織性能調控研究;先進鑄造、塑性加工以及連接過程中的工藝、組織和性能調控的基礎理論研究;使役性能與防護基礎理論研究;燒結金屬孔結構控制基礎研究。
(3)低維碳材料
主要研究方向:低維碳材料的結構特征及其新物性的物理起因;低維碳材料中電子、光子、聲子等的運動規(guī)律和機制;低維碳材料的可控制備原理與規(guī)?;苽浞椒?;低維碳材料的新物性、新效應、新原理器件和新應用探索。
?。?/strong>4)新型無機功能材料
主要研究方向:基于微觀物理模型和物理圖像的高溫超導機理研究與應用;多鐵性材料的合成和磁電耦合機理與應用;超材料的結構設計原理及其新效應器件;阻變材料的物理機制和器件憶阻行為的可調控性及原型器件研究。
?。?/strong>5)高分子材料加工的新原理和新方法
主要研究方向:高分子材料加工中結構演變的物理與化學問題;高分子材料非線性流變學,以及高分子加工不穩(wěn)定現(xiàn)象的機理;高分子材料加工的多尺度模擬與預測;高分子材料加工的在線表征方法;微納尺度加工等新型加工方法,以及基于原理創(chuàng)新的加工技術。
?。?/strong>6)生物活性物質控釋/遞送系統(tǒng)載體材料
主要研究方向:生物啟發(fā)型和病灶微環(huán)境響應載體材料;疾病免疫治療藥物載體材料;核酸類藥物載體材料及其遞送系統(tǒng);具高靈敏度、組織和細胞高靶向性及信號放大功能的分子探針,以及診-治一體化的高分子載體材料及其遞送系統(tǒng)。
?。?/strong>7)化石能源高效開發(fā)與災害防控理論
主要研究方向:實鉆地層物化特性和巖石力學;油氣藏開發(fā),復雜工況管柱與管線,復雜油氣工程相互作用及流動;開采條件下巖體本構關系,多相、多場耦合的多尺度變形破壞機理;極端條件下開采機器人化的信息融合與決策。
(8)高效提取冶金及高性能材料制備加工過程科學
主要研究方向:冶金關鍵物化數(shù)據(jù);選冶過程物相結構演變;反應器新原理與新流程,低碳煉鐵;高效轉化與清潔分離,二次資源利用,高效連鑄;高性能粉末冶金材料;多場作用下的金屬凝固;界面科學;冶金過程高效利用。
?。?/strong>返回首頁 浙公網安備 33010602009704號;浙ICP備18001318號