High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH)(2) Hybrid Nanosheet Films
Gong, JF (Gong, Jiangfeng)[ 1 ]*; Li, JC (Li, Jing-Chang)[ 1 ] ; Yang, J (Yang, Jing)[ 2,3 ] ; Zhao, SL (Zhao, Shulin)[ 2,3 ] ; Yang, ZY (Yang, Ziyuan)[ 1 ] ; Zhang, KX (Zhang, Kaixiao)[ 1 ] ; Bao, JC (Bao, Jianchun)[ 2,3 ] ; Pang, H (Pang, Huan)[ 4,5 ]*; Han, M (Han, Min)[ 2,3,5 ]*(韓敏)
[ 1 ] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[ 2 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
[ 3 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 4 ] Yangzhou Univ, Coll Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[ 5 ] Nanjing Univ, Nanjing Natl Lab Solid State Microstruct, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
ACS APPLIED MATERIALS & INTERFACES,201811,10(44),38341-38349
The orientation and hybridization of ultrathin two-dimensional (2D) nanostructures on interdigital electrodes is vital for developing high-performance flexible in-plane micro-supercapacitors (MSCs). Despite great progress has been achieved, integrating CuSe and Ni(OH)(2) nanosheets to generate advanced nanohybrids with oriented arrangement of each component and formation of porous frameworks remains a challenge, and their application for in-plane MSCs has not been explored. Herein, the vertically aligned CuSe@Ni(OH)(2) hybrid nanosheet films with hierarchical open channels are skillfully deposited on Au interdigital electrodes/polyethylene terephthalate substrate via a template-free sequential electrodeposition approach, and directly employed to construct in-plane MSCs by choosing polyvinyl alcohol-LiCl gel as both the separator and the solid electrolyte. Because of the unique geometrical structure and combination of intrinsically conductive CuSe and battery-type Ni(OH)(2) components, such hybrid nanosheet films can not only resolve the poor conductivity and re stacking problems of Ni(OH)(2) nanosheets but also create the 3D electrons or ions transport pathway. Thus, the in-plane MSCs device fabricated by such hybrid nanosheet films exhibits high volumetric specific capacitance (38.9 F cm(-3)). Moreover, its maximal energy and power density can reach 5.4 mW h cm(-3) and 833.2 mW cm(-3), superior to pure CuSe nanosheets, and most of reported carbon materials and metal hydroxides/oxides/sulfides based in-plane MSCs ones. Also, the hybrid nanosheet films device shows excellent cycling performance, good flexibility, and mechanical stability. This work may shed some light on optimizing 2D electrode materials and promote the development of flexible in-plane MSCs or other energy storage systems.
文章鏈接:
https://pubs.acs.org/doi/10.1021/acsami.8b12543
版權(quán)與免責(zé)聲明:本網(wǎng)頁(yè)的內(nèi)容由收集互聯(lián)網(wǎng)上公開(kāi)發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com