Aerobic Baeyer-Villiger oxidation of ketones over mesoporous Mn-Ce and Mn-Co composite oxides in the presence of benzaldehyde: The effect of valence state
Liu, G (Liu, Gui)[ 1 ] ; Sun, L (Sun, Lei)[ 1 ] ; Luo, W (Luo, Wei)[ 1 ] ; Yang, Y (Yang, Yue)[ 1 ] ; Liu, JH (Liu, Junhua)[ 1 ]*(劉俊華) ; Wang, F (Wang, Fang)[ 2 ]* ; Guild, CJ (Guild, Curtis J.)[ 3 ]
[ 1 ] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Tech Univ, Coll Chem & Mol Engn, Nanjing 211816, Jiangsu, Peoples R China
[ 3 ] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
MOLECULAR CATALYSIS,201810,458,9-18
Aerobic Baeyer-Villiger oxidation of ketones into corresponding esters were performed over mesoporous Mn-Ce and Mn-Co composite oxides prepared by co-impregnation method and benzaldehyde was used as the sacrificing agent. It was found that the best conversion and selectivity were obtained when the Mn/Ce mole ratio was 1:2 (denoted as Mn0.33Ce0.67Os) through investigating the effect of Mn/Ce mole ratio on the catalytic activity. Interestingly, Mn0.33Ce0.67Os (Mn/Co mole ratio was 1:2) catalyst had no catalytic activity for this reaction. Xray diffraction (XRD) results showed that MnOx was completely dissolved into the CeO2 lattice, and Mn0.33Ce0.67Os sample was existed in the form of spinel structure (Co, Mn) (Mn, Co)(2)O-4 and obvious peaks of Co3O4. Nitrogen adsorption-desorption measurements revealed that Mn0.5Ce0.5Os, Mn0.33Ce0.67Os, Mn0.33Ce0.67Os and Mn0.33Ce0.67Os materials possessed mesoporous structure. X-ray photoelectron spectroscopy (XPS) analysis showed that the highest concentration of Ce3+ on the surface of Mn0.33Ce0.67Os catalyst, which could create unsaturated chemical bonds, charge imbalance, and oxygen vacancies on the surface of samples, it is beneficial to the oxidation reaction. Additionally, XPS data revealed that Mn0.33Ce0.67Os catalyst has great potential in catalytic oxidation due to the large amount of active oxygen species on the surface. In addition, manganese and cobalt species on the surface of Mn0.33Ce0.67Os are almost present in the form of Mn2+ and Co3+, it is known that Mn2+ can serve as a potent antioxidant and scavenge the activity of active oxygen species, while Co3+ ions can prevent the formation of oxygen vacancies and inhibit the release of reactive oxygen species, thus the presence of Mn2+ and Co3+ inhibited the catalytic activity of Mn0.33Ce0.67Os catalyst. The diffuse reflectance ultraviolet-visible spectroscopy (DR-UV-vis) and hydrogen temperature-programmed reduction (H-2-TPR) results are in accordance XPS data.
文章鏈接:
https://www.sciencedirect.com/science/article/pii/S2468823118302918?via%3Dihub
版權與免責聲明:本網頁的內容由收集互聯網上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構成其他建議。僅提供交流平臺,不為其版權負責。如涉及侵權,請聯系我們及時修改或刪除。郵箱:sales@allpeptide.com