Cobalt Phosphides Nanocrystals Encapsulated by P-Doped Carbon and Married with P-Doped Graphene for Overall Water Splitting
Yang, J (Yang, Jing)[ 1 ] ; Guo, DH (Guo, Donghua)[ 1 ] ; Zhao, SL (Zhao, Shulin)[ 1 ] ; Lin, Y (Lin, Yue)[ 2 ]*; Yang, R (Yang, Rui)[ 3 ] ; Xu, DD (Xu, Dongdong)[ 1 ] ; Shi, NE (Shi, Naien)[ 3 ] ; Zhang, XS (Zhang, Xiaoshu)[ 1 ] ; Lu, LZ (Lu, Lingzhi)[ 1 ] ; Lan, YQ (Lan, Ya-Qian)[ 1 ] ; Bao, JC (Bao, Jianchun)[ 1 ] ; Han, M (Han, Min)[ 1,4 ]*(韓敏)
[ 1 ] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[ 3 ] Nanjing Univ Posts & Telecommun, Inst Adv Mat, Nanjing 210023, Jiangsu, Peoples R China
[ 4 ] Nanjing Univ, Nanjing Natl Lab Solid State Microstruct, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
SMALL,201903,15(10),1804546
As one class of important functional materials, transition metal phosphides (TMPs) nanostructures show promising applications in catalysis and energy storage fields. Although great progress has been achieved, phase-controlled synthesis of cobalt phosphides nanocrystals or related nanohybrids remains a challenge, and their use in overall water splitting (OWS) is not systematically studied. Herein, three kinds of cobalt phosphides nanocrystals encapsulated by P-doped carbon (PC) and married with P-doped graphene (PG) nanohybrids, including CoP@PC/PG, CoP-Co2P@PC/PG, and Co2P@PC/PG, are obtained through controllable thermal conversion of presynthesized supramolecular gels that contain cobalt salt, phytic acid, and graphene oxides at proper temperature under Ar/H-2 atmosphere. Among them, the mixed-phase CoP-Co2P@PC/PG nanohybrids manifest high electrocatalytic activity toward both hydrogen and oxygen evolution in alkaline media. Remarkably, using them as bifunctional catalysts, the fabricated CoP-Co2P@PC/PG||CoP-Co2P@PC/PG electrolyzer only needs a cell voltage of 1.567 V for driving OWS to reach the current density at 10 mA cm(-2), superior to their pure-phase counterparts and recently reported bifunctional catalysts based devices. Also, such a CoP-Co2P@PC/PG||CoP-Co2P@PC/PG device exhibits outstanding stability for OWS. This work may shed some light on optimizing TMPs nanostructures based on phase engineering, and promote their applications in OWS or other renewable energy options.
文章鏈接:
https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201804546
版權(quán)與免責聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負責。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com