Nickel-catalyzed remote and proximal Wacker-type oxidation
Liu, BB (Liu, Binbin)[ 1 ] ; Hu, PH (Hu, Penghui)[ 1 ] ; Xu, FN (Xu, Fangning)[ 1 ] ; Cheng, L (Cheng, Lu)[ 1 ] ; Tan, MX (Tan, Mingxi)[ 1 ] ; Han, W (Han, Wei)[ 1 ]*(韓維)
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat,Key Lab Appl Photoch, Wenyuan Rd 1, Nanjing 210023, Jiangsu, Peoples R China
COMMUNICATIONS CHEMISTRY,201901,2,5
Wacker oxidation chemistry is widely applied to oxidation of olefins to carbonyls in the synthesis of pharmaceuticals, natural products, and commodity chemicals. However, in this chemistry efficient oxidation of internal olefins and highly selective oxidation of unbiased internal olefins without reliance upon suitable coordinating groups have remained significant challenges. Here we report a nickel-catalyzed remote Wacker-type oxidation where reactions occur at remote and less-reactive sp(3) C-H sites in the presence of a priori more reactive ones through a chain-walking mechanism with excellent regio- and chemo- selectivity. This transformation has attractive features including the use of ambient air as the sole oxidant, naturally-abundant nickel as the catalyst, and polymethylhydrosiloxane as the hydride source at room temperature, allowing for effective oxidation of challenging olefins. Notably, this approach enables direct access to a broad array of complex, medicinally relevant molecules from structurally complex substrates and chemical feedstocks.
文章鏈接:
https://www.nature.com/articles/s42004-018-0107-y
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com