Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal-Organic Framework Nanosheets
Xiao, J (Xiao, Jing)[ 1 ] ; Yang, SS (Yang, Shi-Shu)[ 1 ] ; Wu, JX (Wu, Jian-Xiang)[ 1 ] ; Wang, H (Wang, He)[ 3 ] ; Yu, XZ (Yu, Xizhong)[ 2 ] ; Shang, WB (Shang, Wenbin)[ 2 ] ; Chen, GQ (Chen, Gui-Quan)[ 3 ] ; Gu, ZY (Gu, Zhi-Yuan)[ 1 ]*(古志遠(yuǎn))
[ 1 ] Nanjing Normal Univ, Jiangsu Key Lab Biofunct Mat, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Coll Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanjing Univ Chinese Med, Coll Clin Med 1, Key Lab Metab Dis Chinese Med, Nanjing 210023, Jiangsu, Peoples R China
[ 3 ] Nanjing Univ, State Key Lab Pharmaceut Biotechnol, MOE Key Lab Model Anim Dis Study, Model Anim Res Ctr, 12 Xuefu Ave, Nanjing 210061, Jiangsu, Peoples R China
ANALYTICAL CHEMISTRY,2010907,91(14),9093-9101
Separation of monophosphopeptides from multi-phosphopeptides in complex biological samples is significant in the study of protein kinase signal transduction pathways. To the best of our knowledge, very few materials have been reported that could selectively enrich monophosphopeptides because of the chemical difficulty in retaining the intermediate monophosphopeptides and excluding both non-phosphopeptides and multi-phosphopeptides in acidic conditions, which requires unique interactions to balance the metallic affinity and the hydrophobicity. With the large surface area, abundant accessible active sites, and ultrathin structures, two-dimensional (2-D) metal-organic framework (MOF) Hf-1,3,S-tris(4-carboxyphenyl)benzene (BTB) nanosheets were rationally selected. Due to the elongated organic ligands and the balance between metallic affinity of clusters and hydrophobicity from ligands, the 2-D Hf-BTB nanosheets exhibited unique enrichment selectivity toward monophosphopeptides. The 2-D MOF nanosheets demonstrated excellent sensitivity (detection limit of 0.4 fmol mu L-1) and selectivity [1:1000 molar ratios of beta-casein/BSA (bovine serum albumin)] in model phosphopeptides enrichment. The nanosheets were implemented for the analysis of nonfat milk and human saliva samples as well as in situ isotope labeling for dysregulated phosphopeptides from patients' serum with anal canal inflammation, exhibiting 6.6-fold upregulation of serum phosphopeptide HS4 (ADpSGEGDFLAEGGGVR) compared to the control healthy serum. The proteomics analysis of mouse brain cortical samples associated with Alzheimer's disease, which were from Akt (protein kinase B) conditional knockout mouse and littermate control mouse, was further established with 2-D Hf-BTB nanosheets. With high capture efficiency for monophosphopeptides, this method was capable of distinguishing the difference of monophosphopeptides from microtubule-associated protein tau (MAPT/tau) between the Akt knockout sample and control sample.
文章鏈接:
https://pubs.acs.org/doi/10.1021/acs.analchem.9b01581
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com