Cu5Pt Dodecahedra with Low-Pt Content: Facile Synthesis and Outstanding Formic Acid Electrooxidation
Wang, Y (Wang, Yao)[ 1 ] ; Jiang, X (Jiang, Xian)[ 1 ] ; Fu, GT (Fu, Gengtao)[ 2 ]*; Li, YH (Li, Yuhan)[ 1 ] ; Tang, YD (Tang, Yidan)[ 1 ] ; Lee, JM (Lee, Jong-Min)[ 2 ]*; Tang, YW (Tang, Yawen)[ 1 ]*(唐亞文)
[ 1 ] Nanjing Normal Univ, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Jiangsu, Peoples R China
[ 2 ] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
ACS APPLIED MATERIALS & INTERFACES,201909,11(38),34869-34877
Tailoring composition and structure are significantly important to improve the utilization and optimize the performance of the precious Pt catalyst toward various reactions, which greatly relies on the feasible synthesis approach. Herein, we demonstrate that Cu-rich Cu5Pt alloys with unique excavated dodecahedral frame-like structure (Cu5Pt nanoframes) can be synthesized via simply adjusting the amounts of salt precursors and surfactants under hydrothermal conditions. It is established that the presence of hexamethylenetetramine and cetyltrimethylammonium bromide, as well as the selection of a proper Pt/Cu ratio are key for the acquisition of the target product. The immediate appeal of this material stems from frame-like architecture and ultralow Pt content involved, which can be used to greatly improve the utilization efficiency of Pt atoms. When benchmarked against commercial catalysts, the developed Cu5Pt nanostructures display superior electrocatalytic performance toward formic acid oxidation, owing to unique electronic effect and ensemble effect. This work elucidates a promising methodology for the synthesis of Pt-based nanostructures while highlights the significance of composition and structure in electrocatalysis.
文章鏈接:
https://pubs.acs.org/doi/10.1021/acsami.9b09153
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com