Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructuredCu@CuCoOx supported on graphene oxide
Li, JL (Li, Jinlong)[ 1 ] ; Ren, XY (Ren, Xueying)[ 1 ] ; Lv, H (Lv, Hao)[ 1 ] ; Wang, YY (Wang, Yingying)[ 1 ] ; Li, YF (Li, Yafei)[ 1 ] ; Liu, B (Liu, Ben)[ 1 ]*(劉犇)
[ 1 ] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
JOURNAL OF HAZARDOUS MATERIALS,202006,391
Designing highly efficient and cheap nanocatalysts for room-temperature hydrolysis of ammonia borane (AB) is of great significance for their real application in hydrogen (H-2)-based fuel cells. Here, we report a kind of noble metal (NM)-free hybrid nanocatalysts composed of heterostructured Cu@CuCoOx nanoparticles and a graphene oxide support (denoted as Cu@CuCoOx@GO) and demonstrate their high catalytic performance toward the hydrolysis of AB. By rationally controlling synthetic parameters, we find that optimum Cu-0.3@Cu0.7CoOx@GO achieves a superior catalytic activity with a turnover frequency of 44.6 mol(H2) mol(M)(1 )min(-1) in H2O and 98.2 mol(H2) mol(M)(1 )min(-1) in 0.2 M NaOH, better than most of previously reported NM-free nanocatalysts. This catalyst also discloses a very low activation energy (E-a) of 35.4 kJ mol(-1). The studies on catalytic kinetics and isotopic experiments attribute the high activity to synergistically structural and compositional advantages of Cu-0.3@Cu0.7CoOx@GO, which kinetically accelerates the oxidative cleavage of O-H bond in attacked H2O (the rate-determining step of the hydrolysis of AB). This study thus provides an opportunity for rational design of cheap NM-free nanocatalysts for H-2 production from chemical H-2-storage materials.
文章鏈接:
https://www.sciencedirect.com/science/article/pii/S0304389420301874?via%3Dihub
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com