Characterization of interaction between Bcl-2 oncogene promoter I-Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure-assisted capillary electrophoresis frontal analysis
Yang, Y (Yang, Yang)[ 1 ] ; Fu, HQ (Fu, Hengqing)[ 1 ] ; Qian, C (Qian, Cheng)[ 2 ] ; Li, HH (Li, Huihui)[ 1 ]*(李卉卉); Chen, DDY (Chen, David D. Y.)[ 2 ]*
[ 1 ] Nanjing Normal Univ, Natl & Local Joint Engn Res Ctr Biomed Funct Mat, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Sch Chem & Mat Sci,Changshou Inst Innovat & Dev, Nanjing 210023, Peoples R China
[ 2 ] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z4, Canada
TALANTA,202008,215,120885
B-cell lymphoma 2 (Bcl-2) is an antiapoptotic protein which is believed to be a triggering factor in developing human tumors. The Bcl-2 C-rich promoter element has been shown to form the i-motif (IM) via cytosine - cytosine (C-C+) base pair building blocks, which can be targeted through the binding of ligands associated with Bcl-2 expression modulation. In this work, we monitored IM development and thermodynamic stability within the Bcl-2 promoter via circular dichroism (CD) spectroscopy and electrospray ionization mass spectrometry (ESIMS). The results demonstrated that at an acidic pH, as well as in a crowded molecular environment, the Bcl-2 promoter element predominantly exists in a stable intramolecular IM folded state. We further explored the potential of targeting of the Bcl-2 IM to increase chemotherapeutic efficacy. We first used a rapid ESI-MS screening assay to identify possible ligands, finding that three natural flavonoids (P1, P5 and P6) exhibited a clear affinity for IM binding at 1:1 stoichiometry. Relative to P6, P1 and P5 were expected to form the more stable complexes with the Bcl-2 IM in gas phase according to MS/MS data. We further used ESI-MS and pressureassisted capillary electrophoresis frontal analysis (PACE-FA) to assess the binding constants for these flavonoids in gas and liquid phases, respectively, with the latter considering both specific and non-specific binding. We found P5 and P6 to specifically bind the Bcl-2 IM with binding constants of similar to 10(4) M-1. P1 binding was confirmed to be due to both specific and nonspecific interactions, and the specific binding constant (8.67 x 10(3) M-1) was found much less significant than the binding constant in gas phase. Taken all these observations into consideration, the specific binding of selected flavonoids to the Bcl-2 IM may prove to be a potential ligand for modulating Bcl-2 gene expression.
文章鏈接:
https://www.sciencedirect.com/science/article/pii/S0039914020301764?via%3Dihub
版權(quán)與免責(zé)聲明:本網(wǎng)頁的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點或證實其真實性,也不構(gòu)成其他建議。僅提供交流平臺,不為其版權(quán)負責(zé)。如涉及侵權(quán),請聯(lián)系我們及時修改或刪除。郵箱:sales@allpeptide.com