來(lái)源:中國(guó)斑馬魚信息中心;撰文?|?黃志斌
中性粒細(xì)胞作為血液中最豐富的吞噬細(xì)胞,是先天免疫系統(tǒng)中必不可少的第一道防線。成熟的中性粒細(xì)胞在殺滅和消化病原體、對(duì)損傷做出反應(yīng)和介導(dǎo)炎癥反應(yīng)中發(fā)揮了重要作用,它們最早到達(dá)損傷和炎癥部位,具有很強(qiáng)的趨化性和吞噬功能,在感染時(shí)趨化至感染部位,依賴豐富的顆粒酶、活性氧、中性粒細(xì)胞外誘捕網(wǎng)等殺滅外來(lái)物質(zhì)[1]。中性粒細(xì)胞的定向分化、發(fā)育和成熟是一系列復(fù)雜而有序的動(dòng)態(tài)過(guò)程,要經(jīng)過(guò)嚴(yán)密的轉(zhuǎn)錄因子調(diào)控才能得以實(shí)現(xiàn)。其中任何一個(gè)環(huán)節(jié)發(fā)生錯(cuò)誤,都將引起中性粒細(xì)胞的數(shù)量、分布和功能異常,從而引起各類血液疾病,如先天性中性粒細(xì)胞減少癥(congenital neutropenia,CN)、白細(xì)胞黏附缺陷(leukocyte adhesion deficiency,LAD)、慢性肉芽腫(chronic granulomatous disease,CGD)、骨髓增生異常綜合癥(Myelodysplastic syndrome,MDS)和白血病等[2-5]。因此,了解中性粒細(xì)胞如何正常分化為功能成熟細(xì)胞及遷移到損傷或炎癥部位并發(fā)揮正常吞噬殺傷功能將有助于開發(fā)治療中性粒細(xì)胞相關(guān)疾病的新治療策略。
在造血過(guò)程中,RUNX1參與造血干細(xì)胞的形成有大量報(bào)道 [6,?7]。RUNX1在巨噬細(xì)胞/中性粒細(xì)胞的命運(yùn)決定[8]以及巨核細(xì)胞和淋巴細(xì)胞的成熟過(guò)程[9-11]中也發(fā)揮了重要作用。此外,值得注意的是,RUNX1是各種血液系統(tǒng)惡性腫瘤中最常見的突變基因之一,如急性髓系白血?。ˋcutemyeloid leukemia,AML)和家族性血小板疾病(Familialplatelet disease,FPD) [12,13]。RUNX1突變?cè)诙喾N血液學(xué)惡性腫瘤中的高發(fā)生率為其在血液譜系發(fā)育中的重要作用提供了有力證據(jù)。目前,已經(jīng)發(fā)現(xiàn)了50多個(gè)影響RUNX1功能的染色體易位,其中大多數(shù)導(dǎo)致髓系細(xì)胞成熟停滯甚至進(jìn)展為白血病[14]。雖然RUNX1在造血發(fā)育和血液惡性腫瘤中有大量報(bào)道,但RUNX1在中性粒細(xì)胞成熟和髓系白血病發(fā)生和發(fā)展中的機(jī)制和靶基因,以及如何將它們用于開發(fā)針對(duì)這類患者的潛在靶向治療是目前亟需回答的問(wèn)題。
2021年1月9日,醫(yī)學(xué)院張譯月課題組在 Journal of Biological Chemistry 在線發(fā)表了題為“Runx1 regulates zebrafish neutrophil maturation via synergistic interaction with c-Myb”的研究論文。該研究以斑馬魚為模式生物,研究Runx1在體內(nèi)的作用及其與c-Myb在調(diào)節(jié)中性粒細(xì)胞成熟中的相互作用。通過(guò)遺傳和生化分析,他們發(fā)現(xiàn)Runx1在中性粒細(xì)胞成熟過(guò)程中與c-Myb通過(guò)協(xié)同激活一系列中性粒細(xì)胞成熟相關(guān)基因來(lái)控制發(fā)育過(guò)程。
成熟中性粒細(xì)胞的特征是細(xì)胞質(zhì)中有豐富的顆粒,可被蘇丹黑B(SB)特異性染色[8, 15]。與原始髓系過(guò)程中c-myb-/-突變體的表型相似[16],runx1-/-突變體在受精后36小時(shí)(36 hpf)SB+中性粒細(xì)胞數(shù)量[8]和信號(hào)強(qiáng)度均減少(圖1A-D)。使用微分干涉相差顯微鏡(DIC)[17]也可以在活體狀態(tài)下觀察到runx1-/-突變體中中性粒細(xì)胞顆粒相比對(duì)照組減少(圖1E-F, E'-F'和G-I)。另外,成熟和未成熟的中性粒細(xì)胞也可以通過(guò)May-Grunwald Giemsa染色來(lái)定量分析(圖1J-K)。這些數(shù)據(jù)表明斑馬魚的中性粒細(xì)胞受到runx1突變的影響。
??
圖1?runx1突變影響中性粒細(xì)胞成熟
為了確定runx1與c-myb在中性粒細(xì)胞成熟中的作用,他們比較了runx1和c-myb單突變體與c-myb、runx1雙突變體的中性粒細(xì)胞表型。當(dāng)一個(gè)c-myb+/-等位基因被引入runx1-/-時(shí),SB染色和DIC觀察實(shí)驗(yàn)均表明c-myb+/-;?runx1-/-引起更多的不成熟的特點(diǎn)(圖2A-B)。為了確定c-Myb和Runx1的協(xié)同調(diào)控是否對(duì)中性粒細(xì)胞功能產(chǎn)生生物學(xué)影響,他們檢測(cè)了各組中性粒細(xì)胞對(duì)細(xì)菌的殺滅率。正如預(yù)期的那樣,c-myb+/-的加入進(jìn)一步削弱了runx1-/-對(duì)細(xì)菌的殺滅活性。與哺乳動(dòng)物類似,斑馬魚的中性粒細(xì)胞成熟也需要正常產(chǎn)生中性粒細(xì)胞顆粒相關(guān)蛋白和消化酶,如Lyz、Mpx、Npsn和Srgn [18, 19]。當(dāng)引入c-myb+/-時(shí),runx1-/-突變體中lyz+細(xì)胞進(jìn)一步減少,同樣,?mpx、npsn和srgn也進(jìn)一步減少(圖2C-F)。
圖2?c-myb和runx1協(xié)同調(diào)控中性粒細(xì)胞成熟
對(duì)以上四個(gè)基因的啟動(dòng)子調(diào)控區(qū)進(jìn)行了分析,通過(guò)ChIP-PCR和GFP熒光報(bào)告實(shí)驗(yàn)表明這些中性粒細(xì)胞特異性基因分別受到c-Myb和Runx1的直接調(diào)控。而免疫共沉淀(Co-IP)實(shí)驗(yàn)則表明Runx1和c-Myb可通過(guò)相互結(jié)合來(lái)發(fā)揮作用。?
??
圖3 c-Myb和Runx1通過(guò)相互結(jié)合共同促進(jìn)中性粒細(xì)胞特異性基因轉(zhuǎn)錄
綜上所述,活體實(shí)驗(yàn)及生化實(shí)驗(yàn)表明Runx1的在中性粒細(xì)胞成熟過(guò)程中的調(diào)節(jié)機(jī)制(圖4)。這項(xiàng)研究將提高我們對(duì)RUNX1在中性粒細(xì)胞相關(guān)疾病的發(fā)病機(jī)制的認(rèn)識(shí)。
??
圖4 斑馬魚中c-Myb和Runx1調(diào)控中性粒細(xì)胞發(fā)育的模式圖
醫(yī)學(xué)院黃志斌副教授和博士生陳克敏同學(xué)為該論文共同第一作者,張譯月教授為論文通訊作者。該項(xiàng)目獲得國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFA0800200,2018YFA0801000)、國(guó)家自然科學(xué)基金(31922023)、廣東省高等學(xué)校珠江學(xué)者崗位計(jì)劃資助(2019)等項(xiàng)目資助。據(jù)悉,該研究涉及的部分斑馬魚品系將保藏至國(guó)家水生生物種質(zhì)資源庫(kù)國(guó)家斑馬魚資源中心。
參考文獻(xiàn):
ootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J.,Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al. (2017). RNA targetingwith CRISPR-Cas13. Nature?550,?280-284.
??
1. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D: Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. Plos Pathog 2015, 11(3).
2. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A: Neutrophil function: from mechanisms to disease. Annual review of immunology 2012, 30:459-489.
3. Borregaard N: Neutrophils, from marrow to microbes.Immunity 2010, 33(5):657-670.
4. Galli SJ, Borregaard N, Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nature immunology 2011,12(11):1035-1044.
5. Mantovani A, Cassatella MA, Costantini C, Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nature reviews Immunology 2011, 11(8):519-531.
6. Okuda T, Deursen JV, Hiebert SW, Grosveld G, Downing, R J: AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis. Cell 1996, 84(2):321.
7. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 1996, 93(8):3444-3449.
8. Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP, Zhang M, Zhang W, Wen Z: Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression.Blood 2012, 119(22):5239-5249.
9. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M: AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine 2004, 10(3):299-304.
10. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR et al: Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005, 106(2):494-504.
11. Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W: Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open biology 2018, 8(7).
12. Eaves CJ: Hematopoietic stem cells: concepts, definitions, and the new reality. Blood2015, 125(17):2605-2613.
13. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T, Suzushima H, Takatsuki K, Kanno T, Shigesada K et al: Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999, 93(6):1817-1824.
14. De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Ferec C, De Braekeleer M: RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol 2011,7(1):77-91.
15. Le GD, Redd MJ, Colucciguyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P: Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 2008, 111(1):132.
16.? Jin H, Huang Z, Chi Y, Wu M, Zhou R, Zhao L, Xu J, Zhen F, Lan Y, Li L et al: c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood2016, 128(3):415-426.
17. Herbomel P, Thisse B, Thisse C: Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126(17):3735-3745.
18. Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, Robles-Rebollo I, Xiao X, Wang YF, Barozzi I et al: Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol 2018, 19(9):932-941.
19. Borregaard N: Neutrophils, from Marrow to Microbes.Immunity 2010, 33(5):657-670.
?
版權(quán)與免責(zé)聲明:本網(wǎng)頁(yè)的內(nèi)容由收集互聯(lián)網(wǎng)上公開發(fā)布的信息整理獲得。目的在于傳遞信息及分享,并不意味著贊同其觀點(diǎn)或證實(shí)其真實(shí)性,也不構(gòu)成其他建議。僅提供交流平臺(tái),不為其版權(quán)負(fù)責(zé)。如涉及侵權(quán),請(qǐng)聯(lián)系我們及時(shí)修改或刪除。郵箱:sales@allpeptide.com